Voici les études de cas correspondant à votre recherche :
Je suis responsable du service après-vente d'un site de vente en ligne et nous avons actuellement un système de prédiction automatique permettant de classer les avis de clients comme positifs, négatifs et neutres. Cependant, nous aimerions un système de détection qui, au lieu de donner une étiquette globale à un texte entier, fournisse des informations à un niveau plus fin. Existe-t-il des solutions de ce genre ?
|
Je suis responsable commercial du service de ventes en ligne pour une entreprise de vente de produits sportifs, et dans le cadre du processus de gestion de nos leads, je souhaite disposer d'une solution pour aider les commerciaux de mon équipe à qualifier automatiquement les leads et à les classer en fonction de leur profil ou de leurs intentions d'achat.
CTO d'une société de fournitures électriques pour professionnels, mon service gère la plate-forme B2B et le SRI (Système de Recherche d'Information) derrière le formulaire de recherche produits. Or aujourd'hui, lorsque un client cherche des dominos par exemple, il ne trouve pas les barrettes de connexion. L'indexation des fiches produits et le traitement des requêtes s'appuient pourtant sur un référentiel. Il a été élaboré au fil de l'eau à partir du plan de classement du site et nous ne parvenons pas à le maintenir ou à l'étendre. Comment réorganiser cette ressource rapidement pour améliorer notre fonctionnalité de recherche et l'expérience utilisateurs ?
Je suis responsable du service client de mon entreprise. Mon équipe et moi devons traiter quotidiennement un volume important de demandes clients dans un environnement multicanal, avec une réactivité optimale.
Je dispose de contenus précieux reflétant l’expérience, la satisfaction, les attentes de mes clients. Mais autant les contenus en texte libre sont riches, autant ils sont complexes à exploiter. L'analyse linguistique peut-elle m'apporter une aide ?